########################################################################## # Boost Utilities # ########################################################################## # Copyright (C) 2007 Douglas Gregor # # Copyright (C) 2007 Troy Straszheim # # # # Distributed under the Boost Software License, Version 1.0. # # See accompanying file LICENSE_1_0.txt or copy at # # http://www.boost.org/LICENSE_1_0.txt # ########################################################################## # Macros in this module: # # # # list_contains: Determine whether a string value is in a list. # # # # car: Return the first element in a list # # # # cdr: Return all but the first element in a list # # # # parse_arguments: Parse keyword arguments for use in other macros. # ########################################################################## # This utility macro determines whether a particular string value # occurs within a list of strings: # # list_contains(result string_to_find arg1 arg2 arg3 ... argn) # # This macro sets the variable named by result equal to TRUE if # string_to_find is found anywhere in the following arguments. macro(list_contains var value) set(${var}) foreach (value2 ${ARGN}) if (${value} STREQUAL ${value2}) set(${var} TRUE) endif (${value} STREQUAL ${value2}) endforeach (value2) endmacro(list_contains) # This utility macro extracts the first argument from the list of # arguments given, and places it into the variable named var. # # car(var arg1 arg2 ...) macro(car var) set(${var} ${ARGV1}) endmacro(car) # This utility macro extracts all of the arguments given except the # first, and places them into the variable named var. # # car(var arg1 arg2 ...) macro(cdr var junk) set(${var} ${ARGN}) endmacro(cdr) # The PARSE_ARGUMENTS macro will take the arguments of another macro and # define several variables. The first argument to PARSE_ARGUMENTS is a # prefix to put on all variables it creates. The second argument is a # list of names, and the third argument is a list of options. Both of # these lists should be quoted. The rest of PARSE_ARGUMENTS are # arguments from another macro to be parsed. # # PARSE_ARGUMENTS(prefix arg_names options arg1 arg2...) # # For each item in options, PARSE_ARGUMENTS will create a variable with # that name, prefixed with prefix_. So, for example, if prefix is # MY_MACRO and options is OPTION1;OPTION2, then PARSE_ARGUMENTS will # create the variables MY_MACRO_OPTION1 and MY_MACRO_OPTION2. These # variables will be set to true if the option exists in the command line # or false otherwise. # # For each item in arg_names, PARSE_ARGUMENTS will create a variable # with that name, prefixed with prefix_. Each variable will be filled # with the arguments that occur after the given arg_name is encountered # up to the next arg_name or the end of the arguments. All options are # removed from these lists. PARSE_ARGUMENTS also creates a # prefix_DEFAULT_ARGS variable containing the list of all arguments up # to the first arg_name encountered. MACRO(PARSE_ARGUMENTS prefix arg_names option_names) SET(DEFAULT_ARGS) FOREACH(arg_name ${arg_names}) SET(${prefix}_${arg_name}) ENDFOREACH(arg_name) FOREACH(option ${option_names}) SET(${prefix}_${option} FALSE) ENDFOREACH(option) SET(current_arg_name DEFAULT_ARGS) SET(current_arg_list) FOREACH(arg ${ARGN}) LIST_CONTAINS(is_arg_name ${arg} ${arg_names}) IF (is_arg_name) SET(${prefix}_${current_arg_name} ${current_arg_list}) SET(current_arg_name ${arg}) SET(current_arg_list) ELSE (is_arg_name) LIST_CONTAINS(is_option ${arg} ${option_names}) IF (is_option) SET(${prefix}_${arg} TRUE) ELSE (is_option) SET(current_arg_list ${current_arg_list} ${arg}) ENDIF (is_option) ENDIF (is_arg_name) ENDFOREACH(arg) SET(${prefix}_${current_arg_name} ${current_arg_list}) ENDMACRO(PARSE_ARGUMENTS) # Perform a reverse topological sort on the given LIST. # # topological_sort(my_list "MY_" "_EDGES") # # LIST is the name of a variable containing a list of elements to be # sorted in reverse topological order. Each element in the list has a # set of outgoing edges (for example, those other list elements that # it depends on). In the resulting reverse topological ordering # (written back into the variable named LIST), an element will come # later in the list than any of the elements that can be reached by # following its outgoing edges and the outgoing edges of any vertices # they target, recursively. Thus, if the edges represent dependencies # on build targets, for example, the reverse topological ordering is # the order in which one would build those targets. # # For each element E in this list, the edges for E are contained in # the variable named ${PREFIX}${E}${SUFFIX}, where E is the # upper-cased version of the element in the list. If no such variable # exists, then it is assumed that there are no edges. For example, if # my_list contains a, b, and c, one could provide a dependency graph # using the following variables: # # MY_A_EDGES b # MY_B_EDGES # MY_C_EDGES a b # # With the involcation of topological_sort shown above and these # variables, the resulting reverse topological ordering will be b, a, # c. function(topological_sort LIST PREFIX SUFFIX) # Clear the stack and output variable set(VERTICES "${${LIST}}") set(STACK) set(${LIST}) # Loop over all of the vertices, starting the topological sort from # each one. foreach(VERTEX ${VERTICES}) string(TOUPPER ${VERTEX} UPPER_VERTEX) # If we haven't already processed this vertex, start a depth-first # search from where. if (NOT FOUND_${UPPER_VERTEX}) # Push this vertex onto the stack with all of its outgoing edges string(REPLACE ";" " " NEW_ELEMENT "${VERTEX};${${PREFIX}${UPPER_VERTEX}${SUFFIX}}") list(APPEND STACK ${NEW_ELEMENT}) # We've now seen this vertex set(FOUND_${UPPER_VERTEX} TRUE) # While the depth-first search stack is not empty list(LENGTH STACK STACK_LENGTH) while(STACK_LENGTH GREATER 0) # Remove the vertex and its remaining out-edges from the top # of the stack list(GET STACK -1 OUT_EDGES) list(REMOVE_AT STACK -1) # Get the source vertex and the list of out-edges separate_arguments(OUT_EDGES) list(GET OUT_EDGES 0 SOURCE) list(REMOVE_AT OUT_EDGES 0) # While there are still out-edges remaining list(LENGTH OUT_EDGES OUT_DEGREE) while (OUT_DEGREE GREATER 0) # Pull off the first outgoing edge list(GET OUT_EDGES 0 TARGET) list(REMOVE_AT OUT_EDGES 0) string(TOUPPER ${TARGET} UPPER_TARGET) if (NOT FOUND_${UPPER_TARGET}) # We have not seen the target before, so we will traverse # its outgoing edges before coming back to our # source. This is the key to the depth-first traversal. # We've now seen this vertex set(FOUND_${UPPER_TARGET} TRUE) # Push the remaining edges for the current vertex onto the # stack string(REPLACE ";" " " NEW_ELEMENT "${SOURCE};${OUT_EDGES}") list(APPEND STACK ${NEW_ELEMENT}) # Setup the new source and outgoing edges set(SOURCE ${TARGET}) string(TOUPPER ${SOURCE} UPPER_SOURCE) set(OUT_EDGES ${${PREFIX}${UPPER_SOURCE}${SUFFIX}}) endif(NOT FOUND_${UPPER_TARGET}) list(LENGTH OUT_EDGES OUT_DEGREE) endwhile (OUT_DEGREE GREATER 0) # We have finished all of the outgoing edges for # SOURCE; add it to the resulting list. list(APPEND ${LIST} ${SOURCE}) # Check the length of the stack list(LENGTH STACK STACK_LENGTH) endwhile(STACK_LENGTH GREATER 0) endif (NOT FOUND_${UPPER_VERTEX}) endforeach(VERTEX) set(${LIST} ${${LIST}} PARENT_SCOPE) endfunction(topological_sort) # Small little hack that tweaks a component name (as used for CPack) # to make sure to avoid certain names that cause problems. Sets the # variable named varname to the "sanitized" name. # # FIXME: This is a complete hack. We probably need to fix the CPack # generators (NSIS in particular) to get rid of the need for this. macro(fix_cpack_component_name varname name) if (${name} STREQUAL "foreach") set(${varname} "boost_foreach") else() set(${varname} ${name}) endif() endmacro()